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Abstract. The indirect detection of neutralino dark matter is most promising through annihilation chan-
nels producing a hard energy spectrum for the detected particles, such as neutralino annihilation into Zh.
A cancellation however makes this particular annihilation channel generically subdominant in the huge pa-
rameter space of supersymmetric models. This cancellation requires non-trivial relations between neutralino
mixings and masses, which we derive from gauge independence and unitarity of the MSSM. To show how the
cancellation overshoots leaving only a subdominant result, we use a perturbative expansion in powers of the
electroweak/supersymmetry breaking ratio mZ/mχ.

1 Introduction and motivations

There is no doubt that standard models of particle physics
and cosmology alone cannot describe the full wealth of
observational data recently collected on a wide variety of
length scales. Ad hoc as it may seem, the dark matter
(DM) hypothesis [1, 2] is probably part of the minimal set
of extra ingredients needed to account for the increased
gravitational self-attraction of matter on scales ranging
from galaxies to the full visible universe. More exotic in-
gredients like repulsive dark energy, or modifications of
gravity itself, might also become necessary to cope with
the apparent acceleration of the universe. In the absence
of a convincing unified theoretical solution to these both
issues, experimental searches are the only way to prove
the validity of hypotheses like the existence of a DM par-
ticle. For instance, the first issue would be settled if a new
particle were found and its non-gravitational interactions
measured to be compatible with the cold dark matter relic
density required by the cosmic microwave background and
large scale structure formation [3, 4]. However, these in-
teractions are then by definition weak, and we should not
be surprised that their evidence is extremely hard to ob-
tain, much like for Pauli’s neutrino. Debates like the one
around DAMA’s claim [5–12] for direct detection of DM
are illustrative of this difficulty. This is why it is cru-
cial to be able to cross-check and understand results in
as many different ways as possible, for which a definite
and well motivated DM theoretical framework is neces-
sary. In this work, we shall keep with the well-studied su-
persymmetric lightest neutralino (χ) of mSugra or MSSM
models.
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A particularly crucial cross-check would be the indirect
detection of the neutralino annihilation products, which
would show that such annihilation did indeed occur in
the past, frozen out at some point and re-started in hot
spots like the galactic center or the solar core, where dark
matter later accumulated. However, to identify an indirect
DM signal and possibly determine the neutralino mass by
looking at fluxes of e.g. photons or neutrinos from such
hot spots, it is essential to be able to distinguish that
signal from the standard but poorly known astrophysical
background. These being characterized by energy spectra
with fairly universal power laws, indirect detection will
be most successful when neutralino annihilation proceeds
through primary channels which provide secondary pho-
tons or neutrinos with the hardest possible spectra, and
a sharp energy cut-off around the neutralino mass. From
Fig. 1 (discussed in Appendix A), the most promising an-
nihilation channels are into a τ+τ− pair, into two gauge
bosons (χχ→W+W−, or ZZ, which has the same shape)
or into one gauge boson and a Higgs–Englert–Brout (HEB)
boson [13, 14] (χχ→ Zh).
However, these fairly universal spectra need to be

weighted by the actual model-dependent branching ra-
tios to give the final indirect DM detection signal. It was
noted long ago [15] that the Zh channel is then sup-
pressed, which can be numerically checked1 using the
DarkSusy (3.14.02 version) [16] and the Suspect (2.003
version) code [17]: the top plot of Fig. 2 typically shows
a suppression by three orders of magnitude for various
mSugra models with tanβ = 10. To qualify this suppres-

1 Temporarily failing such check after an update of the
DarkSusy–Suspect interface was actually the starting point of
this work.
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Fig. 1. The shape of differential neutrino (top) and gamma
(bottom) fluxes coming from neutralino annihilations into var-
ious primary channels. The normalizations (depending on
branching ratios) have been arbitrarily rescaled to compare the
shape of all channels; the dependence on mχ (1 TeV here) is
weak

sion, let us start by contributions we expect to be dom-
inant, namely those from SM particle exchanges (in our
case an s-channel Z) since superpartners are necessarily
heavier. As seen in the bottom panel of Fig. 2, this con-
tribution not only dominates but even overwhelms the
total cross-section.We therefore need to understand a dou-
ble suppression, that first cancels this large contribution
and second brings the total Zh annihilation below other
channels. The cancelling contribution necessarily involves
non-SM particle exchanges, which seems contradictory
with the fact that on Fig. 2, the cancellation gets better
with increasing m0 and m1/2, i.e. for maximally broken
supersymmetry.
To be as general as possible, this cancellation should

be checked in a supersymmetry breaking independent
way. This is done in Fig. 3 in the more general MSSM,
while keeping the usual GUT relationM1 =

5
3 tan θWM2 �

0.5M2. A cancellation up to three orders of magnitude thus
seems a generic property of every broken supersymmetry
theory.
To be more concrete, let us now focus on the particu-

lar mSugra model with m0 = 3000GeV, m1/2 = 800GeV,
A0 = 0, tan (β) = 10 and µ > 0, marked by the black star in
Fig. 2. The annihilation cross-sections at rest are:

Fig. 2. Neutralino annihilation branching ratios to Zh for var-
ious m0 and m1/2 values: Z exchange only (bottom), Z and χ
exchanges (top)

vσ (cm3/s) χχ→ tt χχ→ Zh

Z exchange 1.83×10−28 4.72×10−28

All diagrams 1.03×10−28 1.48×10−31

vσ (χχ→ all) = 1.05×10−28

The annihilation is dominated by the tt̄ channel, three
orders of magnitude larger than the Zh one [18]. However,
when restricting to the Z exchange diagram, they are com-
parable, with Zh slightly larger. This is easily understood
by exhibiting the couplings and kinematic factors in the
amplitudes:

A
(
χχ→ tt

)
Z
∝
−g2mtOZ11
cos2 θW

, A (χχ→Zh)Z ∝
−g2mZOZ11
cos2 θW

,

where the χχZ coupling OZ11 is defined in terms of the neu-
tralino mixing matrix2 N (see Appendix D.1):

2 In what follows, we will always work with the hypothesis of
absence of CP -violating phases, in order for theN matrix to be
real (see Appendix C).
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Fig. 3. Contour plot of
σ(χχ→Zh)Z+χ
σ(χχ→Zh)Z

in the MSSM; white dots

correspond to the mSugra models of Fig. 2

OZij = (Ni4Nj4−Ni3Nj3) . (1)

It remains to understand why other exchanges cancel
the Zh channel and not the tt one. For the latter, the t-
channel sfermion exchange can be made arbitrarily small
by taking large enough m0, so that the main contribution
proceeds via (SM) Z boson exchange, conforming to naive
expectations. However, two other diagram are involved in
the Zh annihilation channel: (1) an s-channel pseudoscalar
A exchange, which can be neglected for large m0 (in what
follows we will always work in this pseudoscalar decoupling
limit (D.5)), and (2) t-channel exchanges of the four neu-
tralinos, which cannot be decoupled because of strong links
between the couplings involved in each diagram. These
links appear in the expression of the annihilation ampli-
tudes [19, 20] derived in the next section:

A (χχ→ Zh)Z =
−ig2

√
2

cos2 θW

m2χ
m2Z
βZh×O

Z
11 (2)

A (χχ→ Zh)χ =
ig2
√
2

cos2 θW

m2χ

m2Z
βZh (3)

×
4∑

i=1

2OZ1iO
h
1i

(
mχi −mχ

)
mZ

2m2χ+2m
2
χi
−m2h−m

2
Z

,

where the χiχjh coupling O
h
ij is defined in (D.7) as

Ohij = (cWNi2− sWNi1) (sβNj4− cβNj3)+ (i↔ j) ,

(4)

where the decoupling condition (D.5) has been used. It is
clear that the second amplitude, (3), cannot easily be neg-
lected and might turn out to be comparable with the first

one, (2). However, it is less clear why both should can-
cel with high precision, especially given as different-looking
couplings as (1) and (4).
A toy example of the above cancellation is provided

by the annihilation of a spin singlet tt̄ pair into Zh in
a standardmodel without SU(2). One may first be puzzled
to get a cancellation between an s-channel Z exchange,
which only involves gauge couplings, and a t-channel top
exchange, which involves an a priori independent Yukawa
coupling. However, one soon realizes that the existence of
the s-channel requires both spontaneous breaking of the
gauge symmetry for the ZZh vertex and an axial coupling
for the tt̄Z vertex. This last coupling excludes contribu-
tions to the top mass other than the gauge breaking y〈h〉
one. The two channels g 1

m2
Z

gmz ∝ g
1
mt
y are then both pro-

portional to g/〈h〉 and may cancel. In contrast with this
simple case, the neutralino annihilation studied below is
complicated by the presence of another source of mass,
namely the SUSY breaking Majorana mass terms for the
gauginos.
To analyze this cancellation, we start in Sect. 2 by de-

riving the relevant amplitudes. In Sect. 3, gauge indepen-
dence is used to draw a first link between the couplings,
which is shown to follow from the gauge invariance of
the mass matrix. Unitarity at high energy is then used
in Sect. 4 to derive a second relation, which is combined
with the first one to show that a cancellation is possible.
In Sect. 5, the structure of Rayleigh–Schroedinger pertur-
bation theory is then used to show that this cancellation is
stronger than expected.

2 Amplitudes for neutralino annihilation
at rest

Let us start by deriving the polarized amplitude A (Zh)Z
for neutralino annihilation into Zh via Z exchange. By
construction, neutralinos are their own antiparticles, so
that an initial pair of lightest neutralinos at rest is neces-
sarily in an antisymmetric spin singlet state. The final state
containing a HEB scalar, the outgoing Z boson polariza-
tion needs to be longitudinal and can be chosen as z-axis. It
is then more convenient to use helicity amplitudes [15, 19]
than unpolarized cross-sections [20]. The Feynman dia-
gram and rules defined in Appendix D give the amplitude

A (χχ→ Zh)Z =
−iCA11CZ
q2−m2Z

(χ (p′) γµγ5χ (p)) (5)

×

(
gµν−

qµqν

m2Z

)
εν (k) ,

where χ = u is the incoming neutralino, χ= v the outgo-
ing one in an arbitrary choice of arrows directions. u and
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v are external Dirac spinors at rest in the chiral basis (see
Appendix B), namely

χ (p0) =
√
mχ

(
ξs
ξs

)
; with ξ+ 12

=

(
−1
0

)
or ξ− 12

=

(
0
1

)

for a spin up or down along the z-axis, and similarly for the
“antiparticle”:

χ (p′0) =
√
mχ (−ηs′ , ηs′) .

Thanks to the Majorana condition (B.4), descriptions of
the same neutralino as a particle with ξs′ or as an “antipar-
ticle” with ηs′ are equivalent, provided

ηs′ =−iσ
2ξs′ . (6)

The polarization of the longitudinal Z boson being εν(k) =
(kz , 0, 0, k0)/mZ , and the initial momentum at rest simply
qµ = (2mχ, 0), the polarized amplitude (5) is

A (χ↑χ↓→ Zh)Z =
iCA11CZ
4m2χ−m

2
Z

mχ

mZ

(
σµ11+ σ̄

µ
11

)
(7)

×

(
gµν−

qµqν

m2Z

)
(
kz , 0, 0, k0

)

=−2iCA11CZ
mχ

m3Z
kz . (8)

Notice the time-like structure of the initial state vector
(σµ11+ σ̄

µ
11) = (2, 0, 0, 0): a purely axial coupling talks only

with the scalar part of the two spins at rest. Notice also the
disappearing of the Z pole atmχ =mZ/2.
Expressing kz =mχβZh in terms of the conventional

kinematic factor

βZh =

√

1−
(mh+mZ)

2

4m2χ

√

1−
(mh−mZ)

2

4m2χ
≈

mχ�mZ
1

and using the definitions (D.1) and (D.4) of the couplings
in terms of neutralino mixings given in Appendix D, we fi-
nally find

A (χ↑χ↓→ Zh)Z =
−ig2OZ11
cos2 θW

m2χ

m2Z
βZh . (9)

To get the amplitude with reversed helicities, we just
need to replace the (1, 1) components of the Pauli matrices
in (7) by the (2, 2) components and take the extra sign from
the Majorana condition (6) into account. Thanks to this
sign, only an antisymmetric initial state can contribute,
and it gives with the correct normalization factor

A (χχ→ Zh)Z =
−ig2

√
2

cos2 θW

m2χ

m2Z
βZhO

Z
11 , (10)

in agreement with (2) and existing results [19, 20].
This amplitude (10) has to be compared with the result

of a similar computation for the annihilation into tt̄:

A
(
χχ→ tt

)
Z
=
−ig2

√
2

cos2 θW

mχmt

m2Z
βttT3O

Z
11 , (11)

where βtt̄ =
√
1−m2t/m

2
χ and T3 = 1 is the weak isospin of

the top quark. Notice the different power of mχ, favoring
the Zh channel for large masses.
We have seen in the introduction that t-channel neu-

tralinos exchanges should reverse this conclusion. Follow-
ing the same path, their contribution is seen to be

A (χχ→ Zh)χi =
−iCA1iC

h
1i

Q2−m2χi
×
(
χ (p′)

(
Q/+mχi

)
γµγ5χ (p)

)
εµ (k) ,

with Qµ = pµ−kµ. After some algebra on the t-channel,
and adding the u-contribution (same diagram as before
with p and p′ interchanged), one finds

A (χχ→ Zh)χi =
ig2
√
2

cos2 θW

m2χ

m2Z
βZh (12)

×
2OZ1iO

h
1i

(
mχi −mχ

)
mZ

2m2χ+2m
2
χi
−m2Z−m

2
h

.

The problem is now to understand how the amplitudes (12)
and (10) cancel with the 10−3 precision shown in the in-
troduction. This can happen only if the sum of the second
lines of (12) which contain four powers of the neutralino
mixing matrixN somehow reduces toOZ11 ∼N

2 as a conse-
quence of some symmetry. We already noticed that super-
symmetry had to be maximally broken for the cancellation
to take place. We are thus left with gauge invariance which
is investigated in the next section.

3 Gauge independence and gauge invariance
of the mass matrix

The previous computations were performed in the unitary
gauge, where massive gauge fields have completely “eaten”
a Goldstone boson. One way to obtain non-trivial relations
of the kind we seek is to work in the Rξ-gauge family of
’t Hooft [21], and require independence of the result on the
gauge-fixing parameter ξ.
Let us first notice that the neutralino exchange dia-

grams are gauge independent by themselves. Indeed, in
a vector supermultiplet, only the bosonic gauge field is
gauge dependent, and not the associated gaugino. More-
over, higgsinos are associated with the real part of complex
scalars, which are also gauge independent.
We can thus concentrate on the Z exchange diagram.

When going from unitary to Rξ-gauges, this contribution
splits in two ξ-dependent diagrams: one with Goldstone
boson exchange, and another with the Z boson exchange.
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To exhibit the cancellation of their ξ dependence, it is con-
venient in the Z propagator

−i

q2−m2Z

(
gµν −

(1− ξ) qµqν
q2− ξm2Z

)

to decompose the longitudinal part as

m2Z (1− ξ)(
q2−m2Z

)(
q2− ξm2Z

) =
1

(
q2−m2Z

) −
1

(
q2− ξm2Z

) .

(13)

The first term is nothing but the longitudinal unitary
gauge propagator, and the second exhibits a fake pole at
the Goldstone mass q2 = ξm2Z , with a wrong sign [22]. The
ξ-dependent Z exchange AZξ = AZ +AZG correspond-
ingly decomposes into the previously obtained AZ (5) and
a Goldstone-like amplitude with gauge couplings:

A (χχ→ Zh)ZG =−i
CACZ

m2Z
(χ (p′) q/γ5χ (p))

q · ε (k)

q2− ξm2Z

which, using the mass-shell condition for the initial state
χ̄q/γ5χ= 2mχχ̄γ5χ, becomes

A (χχ→ Zh)ZG =
−ig2OZ11
2 cos2 θW

mχ

mZ
χγ5χ

q · ε (k)

q2− ξm2Z
.

(14)

We now turn to the genuine Goldstone boson exchange.
The ZZh coupling is replaced by the GZh one:

CZGh = iCG (k−k
′)µ , (15)

where CG = g/2 cosθW, and the scalar propagator is sim-
ply i/(q2− ξm2Z). But things are more subtle for the Gχχ
vertex: even if the neutral Goldstone boson is part of the
Z boson in the unitary gauge, it does not have the same
coupling to neutralinos:

CGχiχj =
igOGij
2 cos θW

, (16)

with

OGij = (Ni2cW−Ni1sW) (cβNj3+ sβNj4)+ (i↔ j) . (17)

For the lightest neutralino annihilation, i = j = 1, and
since the coupling is imaginary, the Goldstone only couples
to the axial part of the neutralino. The amplitude for the
Goldstone exchange diagram is thus

A (χχ→ Zh)G =−C
G
χχCG χ (p

′) γ5χ (p) (18)

×
(q+k′)µ
q2− ξm2Z

εµ (k) .

Recalling the kinematics (q = k+k′), the polarization con-
dition (k · ε (k) = 0), and the definitions of the couplings,
we finally have

A (χχ→ Zh)G = i
g2OG11
2c2W

χγ5χ
q · ε (k)

q2− ξm2Z
. (19)

Now, comparing (14) and (19), gauge independence re-
quires a relation between the couplings:

OZ11
mχ

mZ
=−
1

2
OG11 ,

which by (1) and (17) can be expressed in terms of the neu-
tralino mixings and masses:

(
N214−N

2
13

) mχ
mZ

(20)

=− (N12cW−N11sW)× (sβN14+ cβN13) .

This relation can be extended for the annihilation of an ar-
bitrary pair of neutralinos χi–χj in the same channel:

OZij
mχi +mχj
mZ

=−OGij ,

which is a short version of the rather non-trivial identity:

(Ni4Nj4−Ni3Nj3)
mχi +mχj
mZ

(21)

=− (Ni2cW−Ni1sW) (sβNj4+ cβNj3)− (i↔ j) .

Although not completely identical, this relation bears
similarities with the combination of masses andmixings in-
volved in (3). It is therefore interesting to notice that it
only involves the neutralino mass matrix and can be de-
rived in the following way. By the definition of the mixing
matrixN , (C.2), we have

(NM)ij =miNij .

Then for any matrix P , the following identities hold:

(mi+mj)
(
NPN−1

)
ij
=
(
N (MP +PM)N−1

)
ij
.

(22)

As a particular case, if we take for P the isospin operator
that flips the first higgsino sign compared to the second
one,

P = T3 =

(
0 0

0 −σ3

)

=

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 1

⎞

⎟
⎠ ,

we recover the gauge independence relation (21). The par-
ticular form of the right-hand side of this relation then
follows from the special structure of the symmetric neu-
tralino mass matrix:
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M =

(
A C
CT B

)
,

where A is a 2× 2 diagonal matrix reflecting the Majo-
rana nature of gauginos, B is a 2×2 anti-diagonal matrix
reflecting the Dirac nature of the SU(2)-charged higgsino
pair, and C ∼mZ is a 2× 2 matrix that vanishes when
SU(2) is unbroken and with null determinant to otherwise
ensure masslessness of the photon. These conditions make
PM +MP off-diagonal, explaining the non-trivial vanish-
ing of the left-hand side of (22) withmZ .
These remarks stress the central role played by gauge

invariance in the structure of the mass matrix. The appear-
ance of P = T3 is no surprise, as all χχZ couplings find
their root in the gauge invariant h̃h̃Z: higgsinos can couple
to the Z boson thanks to their UY (1) charge which dic-
tates a Dirac behavior. Only the spontaneous breaking of
SU(2) and UY (1) carried by C can then split this degener-
ate Dirac system into a pair of Majorana particles.

4 High energy unitarity

Despite vague similarities, the gauge independence rela-
tions (21) do not yet explain the cancellation of (2) and
(3), and in particular their different powers of mixingsNij .
To get further, we need another relation. Using the pinch
technique [23], we therefore turn to the high energy behav-
ior of the amplitude. Indeed, from rotation invariance, the
outgoing Z boson must have a pure longitudinal polariza-
tion, and it is well known that this can lead to conflicts
with the perturbative unitarity constraint that scattering
amplitudes be bounded by a constant, A(s→∞)<K.
Having checked gauge independence, we can for simpli-

city use the Feynman gauge ξ = 1 to have a purely trans-
verse Z propagator free from high energy divergences. The
dangerous diagrams which must cancel are then the s-
channel Goldstone and t-channel neutralinos exchanges.
A light-like vector being orthogonal to itself, the polar-

ization vector at high energies is approximately

εµ(k)�
kµ

mZ
. (23)

Using this and the kinematic identity 2q ·k = q2+m2Z −
m2h, the amplitude for Goldstone exchange (19) in this
gauge becomes

A (χχ→ Zh)G =
ig2

2 cos2 θW

OG11
2mZ

χγ5χ (24)

×

(
1+
2m2Z−m

2
h

q2−m2Z

)
.

The first “contact” term in the parentheses gives a con-
tribution A �

√
s =
√
q2, which is divergent and violates

unitarity in the high energy limit, while the second term
is better behaved thanks to the appearance of a propaga-
tor denominator. From a diagrammatic point of view, this
is expressed by splitting the diagram into a “pinched” part

and a rest:

For the neutralino exchange channel, we have

A (χχ→ Zh)χ =−2i
4∑

i=1

CA1iC
h
1i

Q2−m2χi

×χ (p′)
(
Q/+mχi

)
γµγ5χ (p)

kµ

mZ
.

Expressing k/= p/−Q/= (p/−mχ)− (Q/−mχi)+(mχ−mχi),
the first term vanishes on-shell, while the second cancels
the propagator pole to give a contact term and a rest:

A (Zh)χ =
−ig2

2c2W

4∑

i=1

OZ1iO
h
1i

mZ
(25)

×

{
χγ5χ−

mχ−mχi
Q2−m2χi

χ
(
Q/+mχi

)
γ5χ

}
.

which can be diagrammatically represented by

Cancellation of the contact terms in (24) and (25) requires
the following identity to hold:

1

2
OG11 =

∑

i

OZ1iO
h
1i ,

or, using (1), (4) and (17), the following relation among the
mixings N :

(N12cW−N11sW) (sβN14+ cβN13) (26)

=
4∑

i=1

(N14Ni4−N13Ni3)

×{(cWN12− sWN11) (Ni4sβ−Ni3cβ)

+ (cWNi2− sWNi1) (N14sβ−N13cβ)} .

As complicated as it may seem, this equation simply fol-
lows from the orthogonality condition NijNkj = δik, with
i, k = 3, 4. We have therefore shown that high energy per-
turbative unitarity of the amplitude is guaranteed by the
unitarity of the mixing matrix.
By combining (26) and (20), a new non-trivial identity

among couplings is obtained:

mχ

mZ
OZ11 =−

∑

i

OZ1iO
h
1i ,
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which is even less trivial when using the definitions of OZij
and Ohij :

mχ

mZ

(
N2i4−N

2
i3

)
=−

4∑

i=1

(N14Ni4−N13Ni3) (27)

×{(cWN12− sWN11) (Ni4sβ−Ni3cβ)

+ (cWNi2− sWNi1) (N14sβ−N13cβ)} .

This identity relates the couplings appearing in Z ex-
change (2) and χ exchange (3) and suggests us to rewrite
the second as

A (χχ→ Zh)χ =−2i
√
2βZh

mχ

mZ

g2

cos2 θW

×

(
mχ

mZ
OZ11+

4∑

i=1

Ri

)

, (28)

where the first term exactly cancels the s-channel Z ex-
change, and the second is subdominant in the high energy
limit s�m2Z ,m

2
χ. It is however not clear why those re-

mainders should be subdominant at rest, because even for
large s= 4m2χ, there is confusion between dynamically sup-
pressed contributions ∼m2Z/s� 1 and neutralino mixing
suppressed ones ∼m2Z/m

2
χ� 1. Moreover, the definition

Ri =O
Z
1iO

h
1i

(
2mχimχ−4m

2
χ−2m

2
χi
+m2h+m

2
Z

)

2m2χ+2m
2
χi
−m2h−m

2
Z

(29)

implies that formZ �mχ,R3 ≈−R4 are comparable with
the first term in (28), and only their sum becomes neg-
ligible. To analyze this final cancellation, a perturbative
expansion inmZ/mχ is therefore needed.

5 Perturbation theory

In the SUSY decoupling limit (mZ �M1,M2, µ), the neu-
tralino mass in Appendix C is naturally split [24] into
M =M0+W , with a leading contribution

M0 =

⎛

⎜
⎝

M1 0 0 0
0 M2 0 0
0 0 0 −µ
0 0 −µ 0

⎞

⎟
⎠ ,

and a perturbation

W =mZ

⎛

⎜
⎝

0 0 −sWcβ sWsβ
0 0 cWcβ −cWsβ

−sWcβ cWcβ 0 0
sWsβ −cWsβ 0 0

⎞

⎟
⎠ ,

triggered by EW symmetry breaking. Following a standard
Rayleigh–Schroedinger perturbation expansion, we start
by solving the unperturbed eigensystem

N0M0N
0T =m0 ,

whose eigenvalues are m0 = diag (M1,M2,−µ, µ), and
whose eigenvectors ϕ0n form the mixing matrix

N0T = (ϕ01, ϕ
0
2, ϕ

0
3, ϕ

0
4) =

⎛

⎜
⎜⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1√
2

−1√
2

0 0 1√
2

1√
2

⎞

⎟
⎟⎟
⎟
⎠
.

The first order corrections to the eigenvalues
m1n =

〈
ϕ0n
∣
∣W
∣
∣ϕ0n
〉
are simply the diagonal elements of

W 0 =N0W N0T:

W 0 =mZ

⎛

⎜
⎜
⎜
⎜
⎝

0 0
sWs−√
2

sWs+√
2

0 0 −
cWs−√
2

−
cWs+√
2

sWs−√
2

−
cWs−√
2

0 0
sWs+√
2

−
cWs+√
2

0 0

⎞

⎟
⎟
⎟
⎟
⎠
,

(30)

where s± = sβ±cβ. From the structure of the perturbation
W , these diagonal elements clearly vanish. Furthermore,
first order corrections to the eigenvectors

∣
∣ϕ1i
〉
=
∑

j �=i

W 0ji
m0i −m

0
j

∣
∣ϕ0j
〉

can be regrouped into N1T = (ϕ11, ϕ
1
2, ϕ

1
3, ϕ

1
4) with

N1 =mZ

×

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 0 − sWC1
M21−µ

2
sWS1
M21−µ

2

0 0 cWC2
M22−µ

2 − cWS2
M22−µ

2

−
sWs−√
2(M1+µ)

cWs−√
2(M2+µ)

0 0
sWs+√
2(µ−M1)

cWs+√
2(M2−µ)

0 0

⎞

⎟⎟
⎟
⎟
⎟
⎠

and C1,2 = (µsβ+M1,2cβ), S1,2 = (M1,2sβ+µcβ).
For a bino-like neutralino (M1 <M2, µ), the Zχχ ver-

tex does not exist without electroweak symmetry breaking,
and knowing the diagonalization matrix N =N0+N1 up
to first order in mZ allows one in fact to compute the first
non-trivial contribution to Z exchange (2) which appears
at second order:

A (χχ→ Zh)Z =−
√
2βZh

M21
m2Z
g2c2βt

2
W

m2Z
(M21 −µ

2)
.

(31)

At the same order, the first non-trivial contribution to χ
exchange (3) requires only one perturbation of the Zχχi
vertex, and no perturbation of the hχχi vertex, which does
exist in the absence of electroweak symmetry breaking.
Further expanding the propagator in powers of mZ would
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give the same structure as (28):

A (χ→ Zh)χ =
√
2βZh

M21
m2Z
g2 cos 2β tan2 θW (32)

×
m2Z

(M21 −µ
2)

(
1+
1

2

m2Z +m
2
h

M21 +µ
2

)
,

suggesting that the remainder is O(m4Z), i.e. two orders
lower than the leading term. However, to firmly establish
this conclusion requires a justification for the absence of
terms O(m3Z), which we shall now find by examining the
general structure of the perturbative expansion.
When solving the eigensystem

(Mo+W )ij N
T
jl =N

T
ilml (33)

by power expansions in mZ for eigenvalues and eigenvec-
tors,

mi =m
0
i +m

1
i + . . . (34)

N =N0+N1+ . . . , (35)

we can to all orders choose the correction to an eigenvector
in N −N0 orthogonal to the corresponding unperturbed
vector inN0: the only price is that we end up with non-unit
vectors inN . This choice however simplifies the recurrence
relation for the solution at order q to

mqi =
(
N0WNq−1T

)
ii
, (36)

(
N0NqT

)
ji
=

(
N0WNq−1T

)
ji

m0i −m
0
j

−
q−1∑

p=1

mpi

(
N0Nq−pT

)
ji

m0i −m
0
j

.

The expressions for q = 0 and q = 1 were given above. We
saw thatM0 is 2×2 block diagonal, and so is N0, whereas
W and thus N1 are block off-diagonal. Following the re-
currence, this can be generalized to show that Nq must
be block diagonal for q even and block off-diagonal for q
odd. Because of this structure, mqi will vanish for q odd,
so that mi(mZ) is holomorphic in m

2
Z . In a similar way,

diagonal blocks of N have a purely even power expan-
sion in mZ , whereas off-diagonal ones only contain odd
powers.
These results can be extended to the amplitudes AZ

and Aχ which then contain only even powers of mZ : the
lowest orderO(m−2Z ) vanishes for both as it should to allow
for a smooth mZ → 0 limit; the next O(m0Z) is equal and
opposite for s- and t-channel exchanges, and the remainder
O(m2Z) dictates the amplitude of theZh annihilation chan-
nel at rest to be lower than the tt̄ pair channel. This can be
loosely expressed as

A (Zh)∝
m2Z
m2χ
�A

(
tt
)
∝
mt

mχ
�A (Zh)Z ∝ 1 .

The order of magnitude and the power of the suppression,

σ (χχ→ Zh)Z+χ
σ (χχ→ Zh)Z

∝
m4Z
M41
,

then agree with those displayed in Figs. 2 and 3.

6 Conclusion

In this work, we have given a quantitative understanding
of why neutralinos at rest cannot annihilate predominantly
into Zh. The possible relevance of this process for indi-
rect DM detection has been shown in the introduction, be-
fore pointing out similarities and differences between the tt
and Zh annihilation channels. We also stressed how much
a naive estimate of this last channel can fail by ignoring
the subtle but tight links between couplings imposed by
symmetries, especially broken ones. Because of these links,
a fine cancellation does occur which requires a closer look.
Having noticed that this cancellation was getting finer with
increasingly broken supersymmetry, we showed that bro-
ken gauge symmetry had to be investigated. This was done
both at the level of gauge independence in Rξ-gauges, and
of unitarity at high energy, known to be delicate for lon-
gitudinal gauge bosons. Both constraints led to non-trivial
relations among the couplings, which showed that indeed
the SM particles exchanges can be cancelled by superpart-
ners exchanges, as heavy as these might be. However, to
quantitatively estimate the importance of what remains
after this cancellation required one to show that a pertur-
bative expansion of the amplitudes in mZ/mχ contained
only even powers. Whether such a cancellation can be ex-
tended from large s to large mχ =

√
s/2 at rest for all

diagrams suffering from large s unitarity problems remains
an open question.
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Appendix A: Indirect detection energy
spectra

The neutrino and photon differential energy spectra of
Fig. 1 were extracted from a PYTHIA simulation of 106

events for each channel, shown as a function of x =
Eν, γ/mχ. For the hard (anti-) neutrinos from the Z bo-
son in the Zh channel that concerned us most, we have
been careful to correct the unpolarized PYTHIA results
by a factor ∝ x(1−x), translating the purely longitudinal
polarization of the Z boson, which suppresses forward neu-
trinos with respect to the WW channel. In spite of this
factor, the Zh channel produces the next-to-hardest neu-
trino spectrum.
For photons, the hard (flat) component of the Zh chan-

nel around x≈ 1 comes from h loop-decaying into two pho-
tons and therefore only appears at the largest values of x.
This leaves only a small number of events (∼ 10/bin) and
large statistical errors which do not appear in the fit shown
in the bottom panel of Fig. 1. There are of course no events
for x > 1, but the precise shape of this vanishing (probably
similar to that of neutrinos fromWW above, as shown) is
hidden by these errors.
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Appendix B: Dirac and Majorana fermion
conventions

To represent the Clifford algebra of the Dirac matrices,

{γµ, γν}= 2ηµν ,

we use the chiral basis:

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−1 0
0 1

)
,

where

σµ = (1, σ) , σµ = (1,−σ)

are 4D extensions of the Pauli matrices σ =
(
σ1, σ2, σ3

)
.

For Majorana spinors, we use [25] the usual Dirac Feyn-
man rules after having chosen an arbitrary orientation of
the spinor lines. The Majorana condition is

χ= χc = CχT , (B.1)

and the plane wave expansion of a Majorana field operator
is thus [26]

χ (x) =

∫
d3p

(2π)
3/2

∑

s=±

(
as (p)us (p) e

−ip·x (B.2)

+a†s (p) vs (p) e
ip·x
)
.

Implementing the Majorana condition (B.1) in (B.2), we
find the relations

us = Cγ
0v∗s , , (B.3)

vs = Cγ
0u∗s , (B.4)

which allow one to flip the orientation of external Majo-
rana lines.

Appendix C: Neutralino mass matrix

The neutralino mass eigenstates are linear combinations of

gaugino and higgsino fields
(
B̃, W̃3, H̃b, H̃t

)
,

χi =Ni1B̃+Ni2W̃3+Ni3H̃b+Ni4H̃t

which diagonalize the mass matrix:

M =

⎛

⎜
⎝

M1 0
0 M2

mZ ×C

mZ ×CT
0 −µ
−µ 0

⎞

⎟
⎠ . (C.1)

C is the 2× 2 electroweak breaking contribution to this
neutralino mass matrix:

C =

(
−sWcβ sWsβ
cWcβ −cWsβ

)
,

with

sW = sin θW, cW = cos θW ,

sβ = sinβ, cβ = cosβ .

The normalized eigenvectors can be collected into a uni-
tary matrix N satisfying

N�MN−1 =MD , (C.2)

where MD is a diagonal matrix containing neutralino
masses.
In the absence of CP -violating phases, the matrix N

can be chosen as a real matrix, and at least one neutralino
mass is then negative.

Appendix D: Lagrangian terms for relevant
couplings

D.1 Z–χ–χ coupling

We have

L=
1

2

4∑

i,j=1

χiγ
µ
(
CVij −C

A
ijγ5
)
χjZµ ,

with

CVij =
g

4 cos θW

(
OZij−O

Z∗
ij

)
, (D.1)

CAij =
g

4 cos θW

(
OZij+O

Z∗
ij

)
(D.2)

and

OZij =Ni4N
∗
j4−Ni3N

∗
j3 .

In the absence of CP -violation, there is a basis such that
CVij = 0.

D.2 h–Z–Z coupling

We have

L=
1

2
CZhZµZ

µ , (D.3)

where

CZ =−
gmZ

cos θW
sin (α−β) . (D.4)

In practice, we will always work in the decoupling limit
mA�mZ , which implies

α= β−
π

2
. (D.5)

Hence, we have sin (α−β)�−1 in (D.4).
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D.3 h–χ–χ coupling

We have

L=
g

2
hχi
{
sα
(
L∗ijPL+LijPR

)
(D.6)

+cα
(
K∗ijPL+KijPR

)}
χj ,

with

Kij =
1

2
Ni4 (Nj2− tanθWNj1)+ (i↔ j) ,

Lij =
1

2
Ni3 (Nj2− tanθWNj1)+ (i↔ j) .

The symmetric form ofK and L comes from the fact we
are working with Majorana particles:

χi (1±γ5)χj = χj (1±γ5)χi .

For realN , this Lagrangian simplifies to

L=
1

2

4∑

i,j=1

Chijhχiχj ,

where

Chij =
g

2 cos θW
Ohij (D.7)

and

Ohij = (cWNi2− sWNi1) (sαNj3+ cαNj4)+ (i↔ j) .

D.4 Z–fermion–fermion coupling

We have

L=
∑

f

fγµ
(
CZVff −C

ZA
ff γ5

)
fZµ ,

where

CZVff =−
g

2 cos θW

(
T3f −2 sin

2 θWQf
)
,

CZAff =−
g

2 cos θW
T3f .

Qf and T3f are the charge and third weak isospin compon-
ent, with the usual normalization: T3top = 1, andQtop =

2
3 .
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